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ABSTRACT 

 In this paper we have studied and proposed some channel estimation methods for massive MIMO 

systems.These methods have better performance as compared to others .we have considered sparse frequency 

selective channel. These channels are independently sparse and share a common support. The methods  estimate the 

impulse response for each channel observed by the antennas at the receiver. At receiver arrays of antennas have been 

used, antennas coordinate with each others. Estimation is performed in a coordinated manner by sharing minimal 

information among neighboring antennas to achieve results better than many contemporary methods. MATLAB is 

used for simulation. Simulations demonstrate the superior performance of the proposed method. 

Index Terms- massive MIMO, OFDM, MATLAB,sparse channel 

I. INTRODUCTION  

Most wireless channels can be modeled as discrete multipath channels with large delay spread and few significant 

paths. This implies sparsity of channel impulse response (CIR) [1-3]. This leads from the fact that scatterers are 

sparsely distributed in space. Thus, it is essentially beneficial to account for such a sparse channel model when 

performing channel estimation. We aim to use this property in the context of MIMO-OFDM systems. The 

deployment of multiple antennas, offers key advantages to wireless systems performance in terms of power gains, 

channel robustness, diversity etc. [4]. Specifically, the use of very large antenna arrays has very recently emerged. 

Such systems, known as massive MIMO. In large-scale MIMO the major performance bottleneck is the 

availability of CIR. Several algorithms exist that take advantage of the sparsity and the assumption that channel 

support does not vary as we move across the antenna grid, however with some drawbacks. For example, the 

algorithms assume common support throughout antenna array which is not true for large arrays. The readers are 

directed to [7-14] for some work on MIMO and massive MIMO channel estimation. In this work, we utilize the 

property of loosely space-invariant channel support along with the sparsity property to propose an efficient pilot-

aided Bayesian approach estimate sparse CIR in the massive-MIMO setup. In this approach each receiving antenna 

collaborates with its direct neighbors to estimate its unknown sparse channel. The neighboring antennas share their 

knowledge of most significant taps (MST) to reach a consensus about the CIR support. 

 

This paper is organized as follows. In Section II, we present the system model and formulate the problem. In Section 

III we introduce a simple Bayesian approach for channel estimation which leads us to present the proposed 

coordinated channel recovery algorithm in Section IV. Simulation results are discussed in Section V and Section VI 

concludes the paper. A detailed version of this paper is also available [15] 

 

II. SYSTEM MODEL AND PROBLEM FORMULATION  

 

Preliminaries  

We consider a MIMO-OFDM system. in which the base station (BS) is equipped with a large two-dimensional 

antenna array consisting of R = M × G antennas distributed across M rows and G columns.1  OFDM is 

adopted as the signaling mechanism. In an OFDM system, serially incoming bits are divided into N parallel streams 

and mapped to a Q-ary QAM alphabet {A1, A2, , AQ}. This results in an N-dimensional data vector denoted by X 
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= [X (1), X (2), , X (N)]T. The equivalent time-domain signal x = FH X is transmitted. Here F is an N × N unitary 

DFT matrix whose (c, d)th entry is fc, d = 
N

1
 exp 








cd

N

2
 j - , and N is the number of subcarriers. 

 

Channel Model  

 The channel through which the transmitted signal x is received at the receive antenna r = (m, g) (where m  {1, 2, 

, M}and g  {1, 2, , G}) as shown in Fig. 1 is denoted by hr  CL. we shall assume that hr has a sparse structure 

and is modeled as hr = hA  hB where  indicates element-by-element multiplication. The vector hA consists of 

element that are drawn from some unknown distribution and hB is a Bernoulli random vector where its ith element 

has an active probability of p(hB (i) = 1) = i. 

 

Therefore, the entries of hB form a collection of iid Bernoulli random variables. Thus, hr is an L-tap discrete-time 

sparse channel where no assumption whatsoever is made about the distribution of its non-zero complex-valued 

coefficients.2 Moreover, depending upon factors such as antenna separation and transmission bandwidth, the MST 

locations of hr's have common support are termed space-invariant arrays (SIA) while the arrays for which this is not 

true are called space-varying arrays (SVA). 

 The received signal at the rth antenna is best described in the frequency domain and is given by 

 Yr = diag (X) Hr + Wr,        (1) 

where r is the Fourier transform of the received vector, Wr ~ CN (0, 
2
w I) is the frequency-domain noise vector and 

diag is an operator that produces a diagonal matrix by spreading the elements of X along the diagonal. Moreover, H r 

= F  TLN 1
T
r 0h  = Fhr is the N × 1 channel frequency response vector where F is the truncated Fourier matrix 

of size N × L formed by selecting the first L columns of F. Finally, we can rewrite (1) as r = Ahr + Wr, where A 





diag (X) F is an N × L matrix. 

Problem Formulation   

Let the transmit antenna sends pilots in K subcarriers and the remaining N - K subcarriers are used for data 

transmission. Let P represents the set of indices of the K subcarriers over which pilots are transmitted. Thus, 

 Yr (P) = A (P) hr + Wr (P)       (2) 

where Yr (P) and Wr (P) are formed, respectively, by selecting entries of Yr and Wr indexed by P. Similarly, A (P) is 

a K × L matrix formed by selecting the rows of A indexed by P. We aim to solve for hr in equation (2). This 

obviously requires that K  L. Since the channel delay spread (equivalently L) is usually large, this requires a large 

number of subcarriers to be reserved for pilots, severely affecting the spectral efficiency of the system. However, by 

virtue of channels being sparse with large delay spread, we could actually solve for hr if K < L as suggested by the 

compressed sensing theory [16, 17]. We consider a random placement of pilot tones P over the OFDM subcarriers as 

it has been found to be optimal for sparse channel estimation [18, 19]. The aforementioned system model will be 

used in subsequent sections to develop our coordinated approach for estimation of all R channels hr. 

 

III. SPARSITY-AWARE DISTRIBUTIONAGNOSTIC BAYESIAN CHANNEL 

ESTIMATION  

Consider the model showed in (2). For simplicity, we will drop the symbols r and P unless required for clarity. 

Hence, 

 Y = Ah + W,        (3) 
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here we are interested in performing Bayesian estimation of the wireless CIR h. We have to characterize(mean and 

variance for Gaussian) the distribution but as the nature of the wireless channel is dynamic it is quite difficult. Even 

if the distribution is known it is very difficult or even impossible to estimate the distribution parameters (e.g., mean 

and variance for Gaussian) especially when the channel statistics are not i.i.d. In that respect, the use of distribution 

agnostic Bayesian sparse signal recovery method (SABMP) [20] will be most suitable which provides Bayesian 

estimates even when the prior is non-Gaussian or unknown. 

 

Another way could be to use SABMP to perform sparse channel recovery at each antenna element in the array. It is 

easy fewer complexes but increase the time. The channels would be estimated independently and the receivers will 

not take advantages of the additional information of common support. We have proposed a coordinated channel 

estimation method in Sec. 4 which utilizes the common support information this method would be different. Now 

we introduce in the following some necessary modifications to the SABMP algorithm presented in [16]. 

 

SABMP for non-iid Bernoulli random vector 

The development of the SABMP algorithm assumes that elements of h are activated with equal probability  (iid 

Bernoulli). However, if some elements are more probable than others, it is desirable to assign those elements a 

higher probability. This requires us to assume a non-iid Bernoulli behavior for h. Thus if S contains the indices of 

the elements of h (i.e. the support of h), the probability of that support is given by, p (S) = iS i j {1, , L}\s(1- j) 

where i is the active probability of index i. Using this p (S) results in a modified version of the dominant support 

selection metric of [20] (see eq. (13) therein). The new metric is, 

 v(S)  
 






Si Sj

iS

n

jYP )1(lnln
2

1 2

22



     (4) 

 For future reference, let us call the algorithm taking advantage of this new dominant support selection 

metric RS1. 

IV. ITERATIVE COORDINATED CHANNEL RECOVERY 

Following section will describe the proposed channel estimation methods. The method is based on coordination 

among the all antennas they coordinate and find the MST and consequently the channel.all the antennas coordinate 

and communicate in an effective manner(stagewise) so as to reduce the overhead. Basically, each receiver element r 

and only its immediate 4-neighbors N = {rN, rS, rE, rW} as shown in Fig. 1 communicate with each other. This 

process is repeated which effectively share the information present at each antenna to all distant antennas. In this 

manner the collaboration is performed to estimate channels accurately. Following sections will describe in detail 

three algorithms for CIR estimation that take advantage of collaboration.  

 

Algorithm 1: Channel Estimation pilots 

Problem seen in (2) can be solved by using observation of the pilots. This algorithm starts by estimating the sparse 

channels hr at each antenna element r using the RS2 algorithm. Algorithm is initialized by considering that  all taps 

of hr have equal active probability init throughout the array. Therefore, p (hB (l) = 1) = l = init, l  {1, 2, , L}. 

 Let Tr = {
r
1 , 

r
2 , , 

r
Tmax } be the set of active taps of channel hr as detected by RS2. Note that since 

init is same throughout the array, the number of detected active taps Tmax will also be equal for all the receivers i.e., 

the cardinality |Tr| = Tmax, r. The RS2 algorithm will also find the marginal probabilities p  r
t , t  {1, 2, , 

Tmax}. Each antenna r, which is acting as central antenna collects these probabilities from its 4-neighors and 

computes the average for each tap i, i  {1, 2, , L} as follows 
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
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 ,s  (5) 

Taps that are not detected by any of the antenna or the central antenna are reprented by, where N+ = N r   and 

psmall is an arbitrarily small value assigned to the taps. For effective estimation this process must be repeated so 

This averaging step is repeated D times by each antenna where the value of D depends on whether the array under 

consideration is SIA or SVA. In the SIA case, since the MST locations do not vary across the array, contribution 

from as many antennas as possible will strong our belief in these locations. Therefore, we may select D = max (M, 

G) which equals to the largest dimension of the antenna array which ensures that each antenna receives information 

from every other antenna in the array while in SVA we have to consider array configuration and other parameters 

for deciding the value of D.Specially, according to lemma 1 in |23| if observations from q antennas are used to 

recover n-sparse channel vectors using K pilots then for a unique solution n    2qK   - 1 holds which 

simplifies to the condition on D as D > 
2
1

4
1

2
K -n  . Here [.] denotes the ceiling operation. now, each antenna 

uses the newly computed probabilities as new initial probabilities with the RS1 algorithm to find new sparse channel 

estimates. The algorithm is described in Algorithm 1. 

 This approach will reduce the communication cost by simply sharing the integers. It is also less 

computational complex 

Algorithm 2: Low Communication/Computational Cost 

In this marginal probabilities are not considered, at receiving antenna channel is estimated by using original SABMP 

algorithm. At each receiver, as per this algorithm each tap location will have some score assigned, this score is based 

on detected amplitudes. Since there are Tmax possible channel tap location with highest absolute amplitude, moves 

downward until a score of 1 is assigned to the tap location with the least amplitude among the top Tmax taps. All 

other tap locations are assigned a score of zero. Here Each antenna is acting  like a central antenna, collects the Tmax 

scores from each neighbor and determine an average score  (i) for each tap i in a fashion similar to that in (7). 

Finally, after repeating the process D times, a belief measure b (i) =  (i)/Tmax is computed to be used by the RS1 

algorithm. b (i) is the estimated belief that the ith tap is active. The beliefs b () are used in place of the marginal 

probabilities to re-estimate the channels following a strategy similar to the explained in Algorithm reduces the 

communicating floating point numbers, Now this algorithm will have lower computational complexity since we are 

not considering and computing marginal probabilities. Now there is new algorithm we are going to suggest for the 

posteriors/scores by selecting reliable data carriers to perform channel estimation. 

 

Algorithm 3: Using Reliable Carriers :      

The estimated channels from previous sections are used to perform equalization and recover the transmitted data. 

This channel estimation can be more reliable and improved if we can include user data in it. But for that we have to 

investigate and analyze the user data i.e to find out data carriers which are most reliable. So, we seek to assign a 

reliability measure  (i), i  {1, , N}\P to each of the N - |P| data carriers. For this purpose, we use the reliability 

measure suggested in [16] to compute carrier reliabilities. The reliability values are then sorted and the carriers 

corresponding to the top U values of  are considered in calculations. Let Rr contains the indices of the top U 

reliable carriers for receiver r. Collaboration among receiver antennas could be performed to further strengthen the 

belief in the reliable carriers. In order to do so, each antenna rc, acting as central antenna, collects the indices of the 

reliable carriers from its 4-neighbors N and selects only those which are common to all antennas under consideration 

R = }C{r r N Rr are the indices of reliable carriers of antenna r. R is then transmitted to the neighbors which 

then send back the corresponding data. Further refinement is done by retaining only those carriers which carry same 
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data. Let us represent these carriers by R. The central antenna uses this final list of reliable carriers plus the pilots 

i.e., R  P to solve, 

 Yr (R  P) = A (R  P) hr + Wr (R  P)  (6) 

and estimate channel hr. Thus the pilots and reliable carriers are used together to reach at better estimates of 

channels which is evident from the simulation results presented in Section 5. The resulting algorithm is presented in 

Algorithm 2. Note that the proposed algorithms are independent of the antenna grid topology as the only information 

required by an antenna is that of its neighbors. 

4.4 MMSE estimation 

The goal is to estimate the complex matrix H from the knowledge of Y and P. Assuming the training  matrix is 

known  the channel matrix can be estimated using the minimum mean square error method as described in [4][5]. 

(7) 

with MSE estimation error given by: 

 

 

where p is the signal to noise ratio, E{.} is a statistical 2 expectation and tr {.} denotes the trace of matrix, 

stands for the Frobenius norm and is the channel correlation matrix. Using eigenvalues 

decomposition, RH can be expressed as (8) 

In (10) Q is the unitary eigenvector matrix and A is the diagonal matrix with nonnegative eigenvalues. By 

substituting (8) into (7), one can get 

 

V. RESULTS 

We have simulated a MIMO-OFDM system with a 10 X 10 receive antenna grid. Also we have chosen pilot carrier 

P randomly and the number of subcarrier taken N=256 we have used  4-QAM modulation and the Gaussian noise 

statistics are adjusted according to the desired SNR. Channels of scarcity 3 and varying length L are generated using 

MATLAB. No hardware is made everything is simulated on MATLAB. All results were averaged over 10 trials. We 

conducted three different experiments. 

 
 

Fig. 1: Performance comparison of algorithms 
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Fig. 2 BER  Performance of PB,IB,MMSE 

 

VI. CONCLUSION 

We have proposed and implemented various channel estimation methods for massive MIMO. We have used 

modified version of SABMP to exploit the sparse common support property and share information in a step by step 

manner to perform channel recovery. We have also compare with MMSE and showed the best method as the 

performance is concerned. The approach results in lower communication and computational complexity. Simulation 

results show superiority over other methods. 
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